
Vol.2 The Evolution of Languages4

 Introduction
Profile of Dave Abrahams

Dave (David) Abrahams is a well-known expert C++ programmer.

•	 In 1996, ever since he joined into the ISO C++ Standard Committee, he has been contributed to the
evolution of C++.

•	 In 1998, together with Beman Dawes, he started up the Boost C++ Libraries which is a set of open-
source C++ libraries.

•	 In 2001, he founded BoostPro Computing to render teaching, training and consulting about the
Boost C++ Libraries.

•	 Every year since 2007, he held the BoostCon to create a place for programmers to meet and discuss
with each other.

In C++98, he advocated the concept of exception safety and an exception guarantee. Thanks to the
contribution of Dave, now we can use exception correctly.

In C++11, he designed rvalue-reference and noexcept. Additionally, he had proposed Concepts, but
Concepts have been removed from the C++11 standardization effort.

The purpose of this interview:
In this interview, based on the theme "the Evolution of Languages", we asked Dave Abrahams, who is a

leading-person of the Boost, semi-standard libraries of C++, mainly about the Library. Especially attracting
our interest is the talking about the Boost's organization and right or wrong of the Boost's review system.

 About Dave Abrahams
Ryo Ezoe: Can you introduce yourself?

Dave Abrahams: I'm 46 years old, and live with my wife and son in Massachusetts, USA. I have been
programming even longer than I've been playing guitar, but not as long as I've been riding bikes. My first
programs were written in BASIC at teletypes on my school's PDP-8, a refrigerator-sized box with no disks
and a magnetic tape drive, so that should give you some idea. Things were simpler back then.

These days, I am one of three principal partners in BoostPro Computing, a training and consulting com-
pany that serves up "all things Boost and advanced C++" to those who want what we've got to offer. It's re-
ally very open-ended: recently we've been doing a lot of work on C++ compiler development. I founded the
company 10 years ago when I realized there was a need to bridge the gap between the open-source world
and the more structured demands of corporate users.

Interview with Dave Abrahams

Interview with Dave Abrahams

 5

By the way, I used to go by
"David" in some circles so as to
appear more professional and less
casual, but all my friends called
me "Dave." Eventually I realized I'd
prefer to be everyone's friend, so
it's "Dave," if you please.

Ryo Ezoe: What is your role in
Boost?

Dave Abrahams: That's an inter-
esting question. Up until the most
recent BoostCon (in May), I was
a "moderator," a catch-all official
role established way back in 1998,
when Boost was founded.

Shortly before this year's
conference, though, I realized
that Boost's system of governance
had become almost completely
ineffective. We had outgrown our
casual practice of decision-making
via consensus with the ultimate
authority vested in the mailing list
moderators. Among other prob-
lems, decisions often dropped on
the floor because a given mod-
erator might not have the time to
reply or any opinion about how
to proceed, and nobody felt they
had the authority to decide that
there was sufficient consensus to
move forward. The Boost member-
ship wanted to move and grow at
a pace that our loose bureaucracy
could no longer support.

With the agreement of the other
moderators, we held a meeting of
"invested parties" at BoostCon and
formed a new governing body, the
Boost Steering Committee1.

So now I'm a steering committee member. What that means exactly is yet to be decided, but I have high
hopes that we'll be able to keep up with Boost's natural pace of evolution.
1 see http://boost.2283326.n4.nabble.com/Boost-Steering-Committee-td3554964.html

Dave Abrahams

http://boost.2283326.n4.nabble.com/Boost-Steering-Committee-td3554964.html

Interview with Dave Abrahams

Vol.2 The Evolution of Languages6

Ryo Ezoe: I didn't know Boost has steering committee movement recently. It's good to know. But as you
say, it looks like it means nothing other than the fact moderators rename themselves, for now.

Dave Abrahams: I hope I didn't say that, because it's far from the case!

First of all, the steering committee currently has eight members, who are neither a strict superset nor a
subset of the Boost moderators, with a plan to diversify by nominating more. We've appointed a chairman
(Beman Dawes) and set out some principles by which we intend to operate. But the most important part is
that we intend (and we're empowered to) actually make decisions decided that nobody was really willing to
take responsibility for in the past. Of course there's never a guarantee that any new initiative (especially a
volunteer initiative) will lead to more than "just talk," but the steering committee members are committed.

Ryo Ezoe: What is your job at BoostPro?

Dave Abrahams: Officially, I'm the founder and CEO. In a small company like ours, though, it's hard to
divide roles up so that people have well-defined jobs. Along with my partners, I teach, consult, do software
development, make purchasing decisions, work on establishing contracts, do way more IT stuff than I'd like,
and generally maintain BoostPro's mission and public face. We are a distributed company, with associates
teaching and programming all over the world, on projects ranging from library design to high-performance
computing.

Our vision for BoostPro is to use our expertise to support and advance a community of engineers to
solve problems and make new discoveries. Naturally much of the work we do is Boost-related, but we don't
limit ourselves to one specific domain. I'm especially excited about opportunities to expand our training

and teach about.

One of the best parts of my job is the opportunities I have to travel and meet programmers in person in
different working environments. In fact, this is part of what inspired me to create the first BoostCon in 2007.
I wanted to create a place to foster connections in person and spark ideas in a way that just doesn't happen
without that face-to-face interaction.

Interview with Dave Abrahams

 7

 Boost
Ryo Ezoe: What is the aim of Boost? How do you describe the aim and purpose of the Boost?

Dave Abrahams: Another interesting question. The official and original aim of Boost is listed on our
website:

Boost provides free peer-reviewed portable C++ source libraries.

We emphasize libraries that work well with the C++ Standard Library. Boost libraries are intended
to be widely useful, and usable across a broad spectrum of applications. The Boost license encourages
both commercial and non-commercial use.

We aim to establish "existing practice" and provide reference implementations so that Boost librar-
ies are suitable for eventual standardization.

First of all, I should emphasize that these founding aims are still relevant today. That said, at our first
steering committee meeting we realized that as Boost has grown, its mission may have evolved. Rather than
trying to "herd" Boost into maintaining its singular mission, I think the steering committee should strive to
acknowledge and support the Boost that exists today. We're planning to have a discussion aimed at revising
and updating (or, if we decide it really hasn't changed, reinforcing) Boost's mission statement.

Ryo Ezoe: What is the difference between Boost and other libraries?

Dave Abrahams: To start with, Boost isn't a library, it's a collection of libraries. So the libraries in Boost
are all part of this federation of related software, which pick up resources, practices, conventions, etc., from
one another. Other libraries don't always have a similar advantage.

But the most important distinction between Boost libraries and others is that everything in Boost goes
through a rigorous peer review process. With few exceptions, this process seems to yield less software
that's obviously the product of one person's quirky vision and more that's high-quality and broadly useful. It
also ensures that the author of any Boost library is prepared to respond to community input.

Ryo Ezoe: What do you think about the idea of Boost 2.0? (I admit this is practically a silly question. It's
not me who come up this particular question) By Boost 2.0 I mean abandoning some libraries that were
useful in C++03 but not anymore in C++0x (because C++0x Standard supports the functionality directly),
and at the same time, dropping the support of some old compilers, so we can take full advantage of
C++0x's new features.

Dave Abrahams: Well, nothing is completely out-of-the-question, but Boost's structure complicates
things a bit. Support for toolsets and language features is ultimately up to the library maintainers, so we
can't prevent anyone from supporting an older compiler if they want to. That said, I think C++03 will con-
tinue to be relevant for quite a few years and most Boost libraries will probably not officially drop support
for quite a few years thereafter.

Interview with Dave Abrahams

Vol.2 The Evolution of Languages8

I expect most newly-accepted libraries will support C++03, at least to some extent, but I also expect to see
a few submissions, like Matt Calabrese's concept support library, that are C++0x-only.

Ryo Ezoe: Do you think adoption of some Boost libraries into the Standard restrict the future evolution of
the Boost?

Dave Abrahams: Maybe a bit; it might be hard to justify removing a feature that was already standard-
ized, for example. That said, it's hard for Boost to make that kind of change anyway, because it breaks users'
code. Regardless, Boost libraries can continue to grow as extensions to the standard.

Ryo Ezoe: C++0x adopted some libraries that was originally developed and evolved in the Boost.
Although I basically like this inclusion, however, I fear it may restrict the future evolution of the Boost
Library. We can't easily change the standard library. Because it may break millions of existing C++ code.
However, since Boost is not a Standard, it sometimes broke the compatibility to improve designs, inter-
faces, and implementations.

Dave Abrahams: We do try to avoid doing that where possible. Boost is popular enough that once a
library has been in Boost for even a few months, breaking changes are still quite painful for users. When
breaking changes are necessary, they usually come early in a library's life-cycle, well before anything has
been proposed for standardization.

Ryo Ezoe: But what if, in the future, somebody invented a supeiror alternative design for such libraries,
but to do so he must break the compatibility.

Dave Abrahams: I'm having trouble imagining the scenario. Technically speaking, practically any change
at all to a C++ library breaks backward compatibility for some hypothetical program:

// main.cpp
#include <some_library.hpp>
using namespace some_library;

int f(void const*);
int x = f("test");
int main() {}

I can break this program by adding a function called f in some_library.hpp, inside its own namespace:

// some_library.hpp
namespace some_library { void f(char const*); }// main.cpp

Interviewer's note: the type of string literal "test" is char const[5]. So, function overload resolution will
pick void f(char const*) over int f(void const*).

There are countless similar examples. But aside from the unavoidable opportunities for name colli-
sion caused by using-directives and macros, it's hard to imagine anything that could force Boost to break
backward compatibility, since we can always use new names and/or namespaces to avoid changing what's
there.

Interview with Dave Abrahams

Programmers’Grimoire		 9

Ryo Ezoe: Should we just go ahead and break the compatibility with the Standard? Or offer the option to
change the behavior by using #ifdef or template parameter? Or simply accept it as a different libraries(like
regex and xpressive) or different versions(boost Phoenix) ?

Dave Abrahams: I think all options are on the table, and as you point out, we've been taking different ap-
proaches in different scenarios. Even if there was one single correct approach—an idea of which I'm not at
all convinced—I don't think we've faced enough of these situations yet to be able to pick one.

Ryo Ezoe: Do you think the peer-review process is the best way to accept a library?

Dave Abrahams: Maybe it's not the best way for some other organization, but for Boost it's absolutely
essential. It's part of who we are: without peer review, Boost would cease to be Boost. That said, there's
always room for improvement in how we implement the process.

Ryo Ezoe: Boost allows anybody who subscribe the Boost ML(which anybody can join) to review the pro-
posed library. Although this is more "open", but I think it has some problems. One problem is that nobody
has a responsibility to review it.

For example, there was a particular proposed library that offers very interesting features for me. But it
was rejected because there weren't enough reviews.

Actually, I didn't review it. Why didn't I review it then?

Because, I thought my skill is insufficient to evaluate the true value of that library. I fear my review would
be treated like a spam. I think, many people feel the samy way like I do.

"Why my review is needed when there are so many better programmers than me. He may post a totally
superior review."

As a result, some libraries can't get enough reviews.

Dave Abrahams: Improvement in the open-source ecosystem depends on input from users who make
requests based on their own needs. If we don't get enough reviews from volunteers, it's can be an indica-
tion that the necessary community to support the library's healthy evolution doesn't exist. But it is true that
some potential users don't ever speak up.

I've met so many extremely bright programmers who are humble enough to say that they are “not quali-
fied” to produce a review. The truth is, in an open-source, peer-review community, the prospective users
of a library are the people most qualified to review a proposed feature. I know it can seem intimidating
to jump in and put your opinions out there, but by participating in the review process you are making an
essential contribution to the community. Moreover, by doing so you are developing your own skills and pro-
fessional identity. The process of choosing my words and speaking up in public has always been the most
powerful way to discover what's really important to me and what I believe.

Interview with Dave Abrahams

Vol.2 The Evolution of Languages10

Ryo Ezoe: Another problem is that review process is so easy to turn into a flame war.

There are many possible methods to design and implement a library. Most of the time, there is no single
best way to solve the problem. Each methods has pros and cons. But people often believe that his method
is better than opponent's. So he insist his method and reject other's. Thus flame war begin.

Dave Abrahams: I think we've been quite successful in keeping the tone of discourse professional and
in avoiding flamewars. Sure, people sometimes get irritated in these discussions, but I don't recall a single
review that I would characterize as a flamewar. And unfortunately, there are trolls in any corner of cyber-
space. But in general the Boost community is one of the most generous and civil environments I've worked
in.

Ryo Ezoe: Do you have something you can say to Japanese Boost users? Like, "Do contribute more".

Dave Abrahams: Yes! Do contribute more, please!

Ryo Ezoe: There are many Japanese Boost users. Unfortunately, most japanese users don't participate in
the Boost mailing list because of the language barrier.

I wish all Japanese programmers learning English. Whether we like it or not, if we want to join an interna-
tional software development, we have to use English.

Dave Abrahams: As you say, the need to learn English is a practical reality in today's technical world. By
contrast, it's quite unfair that native English speakers like me can go anywhere and expect everyone else
to adapt to our language. When I spoke in China last year, I got enthusiastic applause just for being able to

Chinese).

Ryo Ezoe: But I think current situation that most Japanese programmer don't understand English can't be
changed soon.

Dave Abrahams: Why not? Do you think the incentives are not clear enough?

Interview with Dave Abrahams

 11

 C++0x
Ryo Ezoe: Do you have any idea using C++0x's new feature to evolve the Boost?

Do you have any idea about improving existing libraries and new libraries by using C++0x's newly intro-
duced features?

I mean, the question is not when can we use C++0x in Boost, But how can we use C++0x in Boost.

For example, rvalue reference allows us to support native Move Semantics. Variadic Templates reduce
the usage of Preprocessor metaprogramming and we can actually support arbitary parameters rather than
current limited numbers determined by predefined macro.

Also, there was a interesting presentation at the BoostCon 2010("Instantiation Must Go"). A total rede-
sign of MPL by using the decltype and its unevaluated operand.

Dave Abrahams: That presentation by Matt Calabrese was actually a consequence of a workshop I held
at BoostCon 2009, where the idea was to experiment with the use of C++0x features in Boost. We broke up
into groups working on different ways to apply these features. I proposed the MPL redesign with decltype
and led a small group working on it.

The most interesting result in Matt's presentation was that the compile-time speedups we had expected
to see (due to avoiding the instantiation of class template bodies) didn't materialize. Matt showed that the
way we had been measuring compile-time complexity may have been flawed and that our use of overload-
ing in MPL to avoid instantiations may not have paid off. This issue bears more careful investigation if and
when there's an MPL rewrite.

I think there are probably still speedups available due to variadic templates, but we'll need more mea-
surements to be sure of that.

So, yeah, I have ideas about how to use C++0x in Boost. However, I really haven't been able to explore
language features as fully as I'd like to, because I have been devoting so much of my Boost time to the
Ryppl project.

Ryo Ezoe: What do you think about the influence of Boost to the C++0x core language evolution? There
are some libraries that influenced the C++0x core language evolution. For example, Boost.Lambda for na-
tive lambda expression. Boost.Foreach for native range-based for.

Dave Abrahams: That's true.

Aside from the influence of our libraries, the Boost community has also made major direct contributions
to the proposal and design of core language features. Jaakko Järvi and Thorsten Ottosen shepherded the
features you mentioned above through the standardization process, I worked on rvalue references with
Howard Hinnant and Peter Dimov, on noexcept with Doug Gregor and Rani Sharoni. Doug did most of the
work on variadic templates. I'm sure I'm forgetting a few others.

Interview with Dave Abrahams

Vol.2 The Evolution of Languages12

Boost.Parameter is another library I'd really like to see translated into a core language feature, or into
a suite of features. The quality of interface one can produce with that library is amazing, and proves the
feasibility of a core language feature, but the syntax one must use to achieve those results using a library
interface is unfortunate.

Ryo Ezoe: So you want the named parameter in C++ core language.

Dave Abrahams: Yes. But Boost.Parameter does so much more than named parameters. It handles
defaults better than C++ does today. It has deduced parameters. I also want these things for class template
parameters, of course.

Interviewer's note: "deduced parameters" in Boost.Parameter is a feature that can be passed in any posi-
tion without supplying an explicit parameter name under the environment supports "named parameter".

Ryo Ezoe: When that happens, I can imagine people abuse it to construct ESEL not even remotely looks
like an function call on top of that.

Dave Abrahams: As you might imagine, I don't have a problem with that. EDSLs, used responsibly, are a
good thing. And I think EDSL design (as opposed to implementation) is actually quite easy to do well. I've
seen very few bad ones.

Ryo Ezoe: Do you have any other feature you want to have in the post C++0x standard? (My preference
is an alternative feature for #include.)

Dave Abrahams: Yes! Modules are my number one desired feature to make C++ programming better for
everybody. The #include model is a terrible drag on the language, and modules would lift that burden. I
also still really want to see concepts adopted.

Ryo Ezoe: How can we teach C++ and Boost?

Dave Abrahams: Good question. We at BoostPro have spent a lot of time designing courses to do that
well.

Ryo Ezoe: I feel C++ and Boost doesn't have the good education. There are peoples who says "C++ and
Boost are too difficult to use."

C++ details and Boost implementation details are indeed difficult. But I believe we can use it without
knowing these complex details. It should be.

How can we effectively teach how to use C++ and Boost without requiring to understand the deep de-
tails?

Dave Abrahams: Any library that requires its users to understand its implementation details is a failure.
Or, to put it another way, if you need to understand an implementation detail to use the library, it isn't an
implementation detail.

That said, there are complexities of any interesting design (be it a language, a library, or a pocket knife)
that aren't implementation details. The easiest-to-use designs hide those complexities from users except in
unusual cases, and limit the injury users can inflict on themselves when they encounter those complexities
unexpectedly.

Interview with Dave Abrahams

 13

For the most part, Boost's library designs succeed in hiding complexity and limiting damage. C++ tries to
do the same, but the constraints of its C-compatibility legacy make that a bigger challenge. The rest is up to
how we teach.

Here are a few basic principles I try to follow when teaching anything:
•	 Show how to get started quickly so students get an immediate experience of power and competence.

Avoid details assiduously at first.
•	 Develop and present a simple "mental model" that guides understanding even in circumstances we

don't have time to cover in class. This is what prepares students to deal with those complexities you
mentioned.

•	 -
tics") that run through many different topics and can help students to draw together the things they
learn into a coherent and powerful worldview.

Ryo Ezoe: I personally like learning these details. Your book is great in that sense.

Dave Abrahams: It's interesting that you should say so. The book ("C++ Template Metaprogramming,"
which I wrote with Aleksey Gurtovoy) actually presents very few implementation details, instead focusing
on the high-level ideas behind template metaprogramming. In fact, we go out of our way to base the book
on the MPL so that you don't
inside the library. Some people have even complained that we don't show enough of the low-level "tricks."

Ryo Ezoe: But I think requiring all users to be familier with complex metaprogramming tricks is not a
good idea.

Dave Abrahams: I agree! Fortunately, very few Boost libraries require users to be familiar with metapro-
gramming at all, much less the "tricky" aspects of it. The exceptions are mostly the libraries for library writ-
ers (e.g. Boost.MPL).

Ryo Ezoe: What do you think about the future of DSEL on C++? DSEL implementation built on C++'s
template were developed for years. Yet, not all people seriously using these DSEL libraries which use(more
like abuse) Expression Template technique, such as Boost.Lambda, Boost.Phoenix, Boost.Xpressive and
Boost.Spirit.

Dave Abrahams:

common usage. Both terms refer to a mini-language implemented as a library within a host language.

Ryo Ezoe: The problem is, code which use these DSEL libraries, don't even look like a sane C++ code.
So many people avoid using these libraries. If a library is not widely used(especially among beginners and
average programmers), isn't it worthless no matter how good it is? How can we solve this problem?

Dave Abrahams: beginners. For example, take the MPL, which, though not very accessible to most pro-
grammers, is used in the implementation of countless very popular Boost libraries.

But MPL is not an EDSL library, so let's consider those for a moment. Blitz++, a numerical computing
library, was probably the first C++ library to provide an EDSL. It was widely adopted among computational
physicists and others doing high-performance numerical computing, because it could beat FORTRAN on

Interview with Dave Abrahams

Vol.2 The Evolution of Languages14

some computations while providing a much more expressive and economical interface. Blitz++ is still in
active use today. Even though the users of Blitz++ amount to no more than a tiny fraction of all C++ users,
the library and others like it have allowed them to do work that would have been completely impractical

few experts can be a worthwhile endeavor.

That said, I think you are pointing at a real issue, which is that usage of an EDSL will look unfamiliar to
many people. To make the discussion concrete, let's take an example of EDSL usage from the documenta-
tion for Boost.MSM (the Meta State Machine Library) by Christophe Henry:

BOOST_MSM_EUML_TRANSITION_TABLE((
Stopped + play [some_guard] / (some_action , start_playback) == Playing ,
Stopped + open_close/ open_drawer == Open ,
Stopped + stop == Stopped ,
Open + open_close / close_drawer == Empty ,
Empty + open_close / open_drawer == Open ,
Empty + cd_detected [good_disk_format] / store_cd_info == Stopped
),transition_table)

This little code fragment represents a state machine. If your choice is between that fragment and 50
lines of nested switch statements, which would you choose? Now quadruple the complexity of the state
machine, and imagine 24 lines of code that looks like the above, compared with 200 lines of nested switch
statements. Does that change your answer?

Ultimately, are trade-offs here, as with any other abstraction, be it a programming language, an ordinary
library interface, or an EDSL:

you have to ask yourself whether the correctness, maintainability, readability, and encapsulation benefits

experience is that avoiding abstraction leads (surprisingly quickly!) to nightmarishly complex software that

a codebase is extremely low.

Ryo Ezoe: Do you get the idea of new idioms, techniques etc... from other languages or libraries recently?

Dave Abrahams: Other languages, definitely. This isn't my idea, but one of the most interesting things
that happened at the last BoostCon was that some people who know Haskell got together with some who
know Boost.Proto and discovered how to reformulate Proto in terms of monads---in C++! As for me, I've
been been thinking a lot about the new multicore reality and what that will mean for immutability (as in

I've also been lucky enough to be involved in some of the discussions about how to integrate transactional
memory with C++, which is a real cross-disciplinary effort.

Interview with Dave Abrahams

 15

 Interviewer's Postscript
"Our next interviewee should be Dave Abrahams." That was the consensus after we completed our 1st

"grimoire". Dave has made many contributions to the ISO C++ standarization effort and, moreover, is a lead-
ing figure in Boost. We were sure it would be a very interesting interview.

Takatoshi Kondo, who wrote about Boost.Serialization in this "grimoire", had also participated in Boost-
Con 2010, so he approached Dave about this interview. Dave agreed, and that's how this interview came to
be.

Kondo-san's words about Dave-san's character were as follows: "His tone of argument was very incisive,
without compromise". For example, there was a BoostCon 2010 presentation, "Demystifying C++ Excep-
tions," which proposed redefining the three levels of exception-safety guarantee and adding a "Minimal
Guarantee". Dave-san objected the idea and put forward an in-depth, valuable argument on the meaning of
that guarantee. That interaction is typical of Dave-san's uncompromising stance.

According to Kondo-san, Dave-san is also known as a devoted husband. He brings his wife and child
with him to BoostCon, and is known to have left early from C++ committee meetings to care for his family
when his wife was ill.

	Interview with Dave Abrahams
	Introduction
	About Dave Abrahams
	Boost
	C++0x
	Interviewer's Postscript

